当前位置:首页 > 新闻资讯 > FPGA之家动态 >

机器学习之决策树算法

时间:2024-07-31      来源:网络搜集 关于我们 0

决策树是归纳学习中的一种展示决策规则和分类结果的模型算法。在本文中,作者分享了决策树的原理和构造步骤,以及日常应用场景,供各位参考。

一、什么叫决策树?

决策树(Decision Tree),又称判断树,它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知实例,通过某种技术手段将它们转化成可以预测未知实例的树状模型,每一条从根结点(对最终分类结果贡献最大的属性)到叶子结点(最终分类结果)的路径都代表一条决策的规则。

二、决策树的原理是什么?

决策树(Decision Tree),是一种树状结构,上面的节点代表算法的某一特征,节点上可能存在很多的分支,每一个分支代表的是这个特征的不同种类(规则),最后叶子节点代表最终的决策结果。





登录后可继续阅读,无需付费!点击登录


注明:本内容来源网络,不用于商业使用,禁止转载,如有侵权,请来信到邮箱:429562386ⓐqq.com 或联系本站客服处理,感谢配合!
标签: FPGA培训 了不起的芯片 FPGA

机器学习之逻辑回归算法

机器学习之线性回归算法

相关推荐
最新资讯
热门文章
标签列表

用户登陆

    未注册用户登录后会自动为您创建账号

提交留言