当前位置:首页 > 新闻资讯 > FPGA之家动态 >

机器学习之逻辑回归算法

时间:2024-07-31      来源:网络搜集 关于我们 0

逻辑回归算法是机器学习中的一个二分类问题的方法,有着实现简单、高效率和解释性较强的有点,在预测分析上有着比较广泛的应用。这篇文章,我们就来介绍下其算法原理。

一、什么叫逻辑回归算法?

逻辑回归是一种用于二分类问题的机器学习方法,它通过一个名为sigmoid的函数(平滑函数)将线性回归的输出映射到0到1之间的概率值,从而进行分类。

尽管名字中包含“回归”,但实际上它是一种分类方法,主要用于二分类问题,同时也推广到了解决多分类问题。

逻辑回归模型的输出是一个概率值,通常,我们会设定一个阈值,当模型输出的概率大于这个阈值时,我们将样本判定为正类,否则判定为负类。

二、逻辑回归算法的原理





登录后可继续阅读,无需付费!点击登录


注明:本内容来源网络,不用于商业使用,禁止转载,如有侵权,请来信到邮箱:429562386ⓐqq.com 或联系本站客服处理,感谢配合!
标签: FPGA培训 了不起的芯片 FPGA

机器学习常用算法对比总结

机器学习之决策树算法

相关推荐
最新资讯
热门文章
标签列表

用户登陆

    未注册用户登录后会自动为您创建账号

提交留言