当前位置:首页 > 新闻资讯 > FPGA之家动态 >

机器学习之K近邻算法基本原理

时间:2024-07-31      来源:网络搜集 关于我们 0

机器学习中的K近邻算法是一种基于实例的学习算法,有点像“人以类聚,物以群分”的说法。之前的文章很多都是说算法原理,这篇文章,我们来讲讲其优缺点和使用场景。

一、K近邻算法如何理解?

K近邻(K-Nearest Neighbor, KNN)是一种基于实例的学习算法,它利用训练数据集中与待分类样本最相似的K个样本的类别来判断待分类样本所属的类别。在机器学习中用于分类和回归分析。

二、K近邻算法的基本原理?

在训练数据集中找到与该实例...





登录后可继续阅读,无需付费!点击登录


注明:本内容来源网络,不用于商业使用,禁止转载,如有侵权,请来信到邮箱:429562386ⓐqq.com 或联系本站客服处理,感谢配合!
标签: FPGA培训 了不起的芯片 FPGA

机器学习之支持向量机算法

FPGA设计应用实例—Verilog HDL基本时序电路建模

相关推荐
最新资讯
热门文章
标签列表

用户登陆

    未注册用户登录后会自动为您创建账号

提交留言