当前位置:首页 > 新闻资讯 > FPGA之家动态 >

研究人员基于深度学习无创获得血液输入函数

时间:2024-07-31      来源:网络搜集 关于我们 0

  全面量化大脑PET图像,常常需要精确的血流输入函数。然而传统方法中,获取这一函数通常依赖于侵入性且耗时的动脉导管采血,这在临床实践中往往难以实现。

  7月2日,中国科学院深圳先进技术研究院副研究员孙涛团队与河南省人民医院副院长王梅云团队合作,在医学影像顶级期刊《IEEE医学影像汇刊》发表最新研究。研究团队介绍了一种通过训练全身数据,实现从动态脑PET数据推断血液输入函数的方法。

  该研究中,科研人员提出了一种基于深度学习的替代方法,用于估计动态脑FDG(氟代脱氧葡萄糖)扫描的输入函数(DLIF)。这一输入函数是通过CT图像上定义的升主动脉勾画全身PET(正电子发射断层扫描)数据生成的。在构建深度学习网络结构方面,该研究采用了长短时记忆网络与全连接网络的组合。

  此外,研究团队还强调了将动力学建模拟合度纳入作为额外物理损失的重要性,有助于引导模型减少偏差并降低对大量训练样本的依赖。为了验证该方法的有效性,研究团队使用了一个包含85个全身动态扫描的数据集,包含了来自八个脑区和...





登录后可继续阅读,无需付费!点击登录


注明:本内容来源网络,不用于商业使用,禁止转载,如有侵权,请来信到邮箱:429562386ⓐqq.com 或联系本站客服处理,感谢配合!
标签: FPGA培训 了不起的芯片 FPGA

四方股份获得发明专利授权:“基于深度学习的机械隔离刀闸的状态精确判断方法及系统”

星宇股份申请基于深度学习的智能驾驶数据自动标注方法专利,提高了标注结果的准确率,提升了数据标注的效率和质量

相关推荐
最新资讯
热门文章
标签列表

用户登陆

    未注册用户登录后会自动为您创建账号

提交留言