当前位置:首页 > 新闻资讯 > FPGA之家动态 >

深度学习的三种硬件方案:ASIC,FPGA,GPU;你更看好?

时间:2024-08-09      来源:网络搜集 关于我们 0

今天被罗振宇的跨年演讲刷爆了朋友圈。不过他讲深度学习和GPU的时候,真让人虐心。

显卡的处理器称为图形处理器(GPU),它是显卡的“心脏”,与CPU类似,只不过GPU是专为执行复杂的数学和几何计算而设计的,这些计算是图形渲染所必需的。

对深度学习硬件平台的要求

要想明白“深度学习”需要怎样的硬件,必须了解深度学习的工作原理。首先在表层上,我们有一个巨大的数据集,并选定了一种深度学习模型。每个模型都有一些内部参数需要调整,以便学习数据。而这种参数调整实际上可以归结为优化问题,在调整这些参数时,就相当于在优化特定的约束条件。

  



登录后可继续阅读,无需付费!点击登录


注明:本内容来源网络,不用于商业使用,禁止转载,如有侵权,请来信到邮箱:429562386ⓐqq.com 或联系本站客服处理,感谢配合!
标签: FPGA培训 了不起的芯片 FPGA

从FPGA说起的深度学习(九)- 优化最终章

FPGA:深度学习的未来?

相关推荐
最新资讯
热门文章
标签列表

用户登陆

    未注册用户登录后会自动为您创建账号

提交留言