时间:2024-08-08 来源:网络搜集 关于我们 0
引言
当今的深度学习应用如此广泛,它们能够为医疗保健、金融、交通、军事等各行各业提供支持,但是大规模的深度学习计算对于传统的中央处理器(CPU)和图形处理器(GPU)来说是非常耗时和资源密集的。为了满足这种高性能计算需求,现在开始使用基于场可编程门阵列(FPGA)的加速器,其高并行性和低功耗特性使其成为深度学习加速的理想选择。在本文中,我们将讨论FPGA的优势,探讨调整深度学习计算的方法,以及如何使用开源FPGA加速器库来构建自己的FPGA加速器。通过本文的阅读,您将了解如何抢先一步,使用FPGA来加速深度学习计算。FPGA的优势
FPGA(Field Programmable Gate Array,场可编程门阵列)是一种灵活可编程的硬件设备,与CPU和GPU相比,它具有以下几个优势:1,FPGA具有高度可编程性和可定制性。与CPU和GPU相比,FPGA可以进行定制...