当前位置:首页 > 新闻资讯 > FPGA之家动态 >

「大模型+强化学习」最新综述!港中文深圳130余篇论文:详解四条主流技术路线

时间:2024-08-03      来源:网络搜集 关于我们 0

强化学习(RL)通过与环境交互的试错反馈来优化顺序决策问题。

虽然RL在允许大量试错的复杂电子游戏环境中实现了超越人类的决策能力(例如王者荣耀,Dota 2等),但很难在包含大量自然语言和视觉图像的现实复杂应用中落地,原因包括但不限于:数据获取困难、样本利用率低、多任务学习能力差、泛化性差、稀疏奖励等。

大语言模型(LLM),通过在海量数据集上的训练,展现了超强的多任务学习、通用世界知识目标规划以及推理能力。以ChatGPT为代表的LLM已经被广泛应用到各种现实领域中,包括但不限于:机器人、医疗、教育、法律等。

在此背景下,LLM可以提高强化学习在例如多任务学习、样本利用率、任务规划等方面的能力,帮助提高强化学习在复杂应用下的学习表现,例如自然语言指令跟随、谈判、自动驾驶等。

为此,来自香港中文大...





登录后可继续阅读,无需付费!点击登录


注明:本内容来源网络,不用于商业使用,禁止转载,如有侵权,请来信到邮箱:429562386ⓐqq.com 或联系本站客服处理,感谢配合!
标签: FPGA培训 了不起的芯片 FPGA

怎样学习制作短视频?制作短视频需要哪些基础?

英特尔宣布FPGA业务独立 更新产品路线图信息

相关推荐
最新资讯
热门文章
标签列表

用户登陆

    未注册用户登录后会自动为您创建账号

提交留言