当前位置:首页 > 新闻资讯 > FPGA之家动态 >

【学术论文】基于FPGA的深度学习目标检测系统的设计与实现

时间:2024-07-31      来源:网络搜集 关于我们 0

摘要:

针对当前深度学习目标检测算法计算复杂度高和内存需求大等问题,设计并实现了一种基于FPGA的深度学习目标检测系统。设计对应YOLOv2-Tiny目标检测算法的硬件加速器,对加速器各模块的处理时延建模,给出卷积计算模块的详细设计。实验结果表明,与CPU相比,CPU+FPGA的异构系统是双核ARM-A9能效的67.5倍,Xeon的94.6倍;速度是双核ARM-A9的84.4倍,Xeon的5.5倍左右。



登录后可继续阅读,无需付费!点击登录


注明:本内容来源网络,不用于商业使用,禁止转载,如有侵权,请来信到邮箱:429562386ⓐqq.com 或联系本站客服处理,感谢配合!
标签: FPGA培训 了不起的芯片 FPGA

【详解】FPGA:深度学习的未来?

为什么FPGA在深度学习领域有着得天独厚的优势?

相关推荐
最新资讯
热门文章
标签列表

用户登陆

    未注册用户登录后会自动为您创建账号

提交留言